Q.1 Select the word that fits the analogy:
Partial : Impartial : : Popular : ________
(a) Impopular (b) Dispopular
(c) Mispopular (d) Unpopular

Ans. (d)
Partial and Impartial are opposite, in the same way popular and unpopular are opposite words.

Q.2 The monthly distribution of 9 Watt LED bulbs sold by two firms X and Y from January to June 2018 is shown in the pie-chart and the corresponding table. If the total number of LED bulbs sold by two firms during April-June 2018 is 50000, then the number of LED bulbs sold by the firm Y during April-June 2018 is ________.

<table>
<thead>
<tr>
<th>Months</th>
<th>Ratio of LED bulbs sold by two firms X : Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>7 : 8</td>
</tr>
<tr>
<td>February</td>
<td>2 : 3</td>
</tr>
<tr>
<td>March</td>
<td>2 : 1</td>
</tr>
<tr>
<td>April</td>
<td>3 : 2</td>
</tr>
<tr>
<td>May</td>
<td>1 : 4</td>
</tr>
<tr>
<td>June</td>
<td>9 : 11</td>
</tr>
</tbody>
</table>

LED bulbs sold
By

\[
Y_{April} = \frac{2}{5} \times 15 = 6\%
\]

\[
Y_{May} = \frac{4}{5} \times 10 = 8\%
\]

\[
Y_{June} = \frac{10}{20} \times 11 = 5.5\%
\]

LED bulb sold by Y during April-June

\[
A + B + C = (6 + 8 + 5.5)\% = 19.5\%
\]

(a) 11250 (b) 9750 (c) 8250 (d) 8750

Ans. (*)
Total LED bulb sold by X and Y 35% this value = 50000
So, LED bulb sold by Y (April to June)

\[
\frac{50000}{35} \times 19.5 = 27857.142
\]

[As 35% of total = 5000

\[
\text{Total} = \frac{50000}{0.35} = 142857.142
\]

Y (April- June) = 19.5% of total \(0.195 \times 1442857.14 = 2785.142\]

No option is matching.

Mistake in paper was that examiner intended to give total as 50000 and the options were place accordingly as 19.5% of 50000 = 9750 which is (d).

But this will be wrong as total is NOT 50000 as per language. So correct answer is 27857.142.

Which matches with none of options.

Q.3 After the inauguration of the new building, the head of department (HOD) collated faculty preferences for office space. P wanted a room adjacent to the lab. Q wanted to be close to the lift. R wanted a view of the playground and S wanted a corner office.

Assuming that everyone was satisfied, which among the following shows a possible allocation?

(a) PLAYGROUND
 HoD S R Q
 ROAD P LIFT
 LAB

(b) PLAYGROUND
 S R P HoD
 ROAD Q LIFT
 LAB

(c) PLAYGROUND
 HoD Q R S
 ROAD P LIFT
 LAB

(d) PLAYGROUND
 S R HoD Q
 ROAD P LIFT
 LAB

Ans. (d)
Q.4 In a school of 1000 students, 300 students play chess and 600 students play football. If 50 students play both chess and football, the number of students who play neither is ________.
(a) 150 (b) 50 (c) 100 (d) 200

Ans. (a)

Total number of students playing sports = 850
Total number of students not playing sports = 1000 – 850 = 150

Q.5 Select the most appropriate word that can replace the underlined word without changing the meaning of the sentence:
Now-a-days, most children have a tendency to **belittle** the legitimate concerns of their parents.
(a) Applaud (b) Begrudge (c) Disparage (d) Reduce

Ans. (c)

Belittle means to undervalue/ underestimate some as unimportant. Disparage fits in the most appropriate manner.

Q.6 For the year 2019, which of the previous year’s calendar can be used?
(a) 2011 (b) 2013 (c) 2012 (d) 2014

Ans. (b)

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of odd days</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>1</td>
</tr>
<tr>
<td>2014</td>
<td>1</td>
</tr>
<tr>
<td>2015</td>
<td>1</td>
</tr>
<tr>
<td>2016</td>
<td>2</td>
</tr>
<tr>
<td>2017</td>
<td>1</td>
</tr>
<tr>
<td>2018</td>
<td>1</td>
</tr>
</tbody>
</table>

Total 7

Number of odd days in 2019 = 1, so 2013 calendar is same as 2019.
Q.7 If \(f(x) = x^2 \) for each \(x \in (-\infty, \infty) \), then \(\frac{f(f(f(x))))}{f(x)} \) is equal to _______.

(a) \(f(x) \)
(b) \((f(x))^4 \)
(c) \((f(x))^2 \)
(d) \((f(x))^3 \)

Ans. (d)

\[
\begin{align*}
 f(x) &= x^2 \\
 f(f(x)) &= f(x^2) = (x^4)^2 = x^8 \\
 \frac{f(f(f(x))))}{f(x)} &= \frac{x^8}{x^2} = x^6 = (x^2)^3 = (f(x))^3
\end{align*}
\]

Q.8 Rescue teams deployed ________ disaster hit areas combat ________ a lot of difficulties to save the people.

(a) with, at
(b) to, to
(c) with, with
(d) in, with

Ans. (d)

Q.9 Nominal interest rate is defined as the amount paid by the borrower to the lender for using the borrowed amount for a specific period of time. Real interest rate calculated on the basis of actual value (inflation-adjusted), is approximately equal to the difference between nominal rate and expected rate of inflation in the economy. Which of the following assertions is best supported by the above information?

(a) Under low inflation, real interest rate is low and borrowers get benefited.
(b) Under high inflation, real interest rate is low and borrowers get benefited.
(c) Under low inflation, real interest rate is high and borrowers get benefited.
(d) Under high inflation, real interest rate is low and lenders get benefited.

Ans. (b)

Q.10 The ratio of ‘the sum of the odd positive integers from 1 to 100’ to ‘the sum of the even positive integers from 150 to 200’ is ________.

(a) 50 : 91
(b) 1 : 1
(c) 1 : 2
(d) 45 : 95

Ans. (a)

\[
\begin{align*}
 \text{Sum of odd numbers from 1 to 100} &= \frac{100}{2} \times (1 + 100) = 2550 \\
 \text{Sum of even numbers from 150 to 200} &= \frac{200 - 150 + 1}{2} \times 150 = 175 \\
 \frac{\text{Sum of odd numbers}}{\text{Sum of even numbers}} &= \frac{2550}{175} \approx 14.62 \\
\end{align*}
\]

From 1 to 100 = 50 odd number
From 150 to 200 = 26 even number
SECTION B : TECHNICAL

Q.1 For an axle load of 15 tonne on a road, the Vehicle Damage Factor (round off to two decimal places), in terms of the standard axle load of 8 tonne, is _________.

Ans. (12.35)

Axle load = 15 T
Standard axle load = 8 T

\[\text{VDF} = \left[\frac{15}{8} \right]^4 = 12.35 \]

End of Solution

Q.2 Muskingum method is used in

(a) hydrologic channel routing (b) hydraulic channel routing
(c) hydrologic reservoir routing (d) hydraulic reservoir routing

Ans. (a)

End of Solution

Q.3 The traffic starts discharging from an approach at an intersection with the signal turning green. The constant headway considered from the fourth or fifth headway position is referred to as

(a) saturation headway (b) effective headway
(c) discharge headway (d) intersection headway

Ans. (a)

End of Solution

Q.4 Soil deposit formed due to transportation by wind is termed as

(a) lacustrine deposit (b) alluvial deposit
(c) estuarine deposit (d) aeolian deposit

Ans. (d)

Soil deposited by wind is Aeolian soil.

End of Solution

Q.5 The relationship between oxygen consumption and equivalent biodegradable organic removal (i.e. BOD) in a closed container with respect to time is shown in the figure.

[Graph showing the relationship between oxygen consumption and equivalent biodegradable organic removal]
Assume that the rate of oxygen consumption is directly proportional to the amount of degradable organic matter and is expressed as \[\frac{dL_t}{dt} = -kL_t, \] where, \(L_t \) (in mg/litre) is the oxygen equivalent of the organics remaining at time \(t \) and \(k \) (in d\(^{-1}\)) is the degradation rate constant. \(L_0 \) is the oxygen of organic matter at time, \(t = 0 \).

In the above context, the correct expression is
(a) \(L_t = L_0(1 - e^{-kt}) \)
(b) \(\text{BOD}_t = L_0 - L_t \)
(c) \(L_0 = L_te^{kt} \)
(d) \(\text{BOD}_5 = L_5 \)

Ans. (b)

Q.6 A one-dimensional consolidation test is carried out on a standard 19 mm thick clay sample. The oedometer's deflection gauge indicates a reading of 2.1 mm, just before removal of the load, without allowing any swelling. The void ratio is 0.62 at this stage. The initial void ratio (round off to two decimal places) of the standard specimen is \(\underline{0.82} \).

Ans. (0.82)

\[\text{Oedometer reading} = 2.1 \text{ mm} \]
\[16 \text{ mm thick, } e = 0.62 \]
\[
\frac{\Delta H}{H_0} = \frac{\Delta e}{1 + e_0} = \frac{e_0 - e_t}{1 + e_0}
\]
\[
\frac{2.1 \text{ mm}}{19 \text{ mm}} = \frac{e_0 - 0.62}{1 + e_0}
\]
\[e_0 = 0.82 \]

Q.7 The velocity components in the \(x \) and \(y \) directions for an incompressible flow are given as \(u = (-5 + 6x) \) and \(v = -(9 + 6y) \), respectively. The equation of the streamline is
(a) \((-5 + 6x)(9 + 6y) = \text{constant} \)
(b) \(\frac{-5 + 6x}{9 + 6y} = \text{constant} \)
(c) \(\frac{9 + 6y}{-5 + 6x} = \text{constant} \)
(d) \((-5 + 6x) - (9 + 6y) = \text{constant} \)

Ans. (a)

Given:
\[u = -5 + 6x \]
\[v = -(9 + 6y) \]

Equation of streamline:
\[
\frac{dx}{u} = \frac{dy}{v}
\]
\[
\frac{dx}{-5+6x} = \frac{dy}{-(9+6y)}
\]
Integrating it,
\[
\ln(-5 + 6x)^{\frac{1}{6}} = -\ln(9 + 6y)^{\frac{1}{6}} + \ln C^{\frac{1}{6}}
\]

\[
\frac{1}{6} \ln(-5 + 6x) \cdot (9 + 6y) = \frac{1}{6} \ln C
\]

Take antilog,
\[
(-5 + 6x)(9 + 6y) = \text{constant}
\]

\[
u \cdot v = \text{constant}
\]

Q.8

A triangular direct runoff hydrograph due to a storm has a time base of 90 hours. The peak flow of 60 m³/s occurs at 20 hours from the start of the storm. The area of catchment is 300 km². The rainfall excess of the storm (in cm), is

(a) 5.40
(b) 2.00
(c) 3.24
(d) 6.48

Ans. (c)

\[20 \text{ hr} \quad 70 \text{ hr} \]
\[60 \text{ m}^3/\text{sec} \]
\[\begin{array}{c}
\text{Time (hr)} \\
\text{Discharge (m}^3/\text{sec)} \\
\end{array}
\]

\[A_c = 300 \text{ km}^2 \]

\[\Rightarrow \left[\frac{1}{2} \times 60 \text{ m}^3/\text{sec} \times 90 \times 3600 \text{ s}}{300 \times 10^6 \text{ m}^2} \times 100 \right] \text{ cm} = \text{Rainfall excess}
\]

\[\therefore \text{Rainfall excess} = 3.24 \text{ cm}
\]

Q.9

24-h traffic count at a road section was observed to be 1000 vehicles on a Tuesday in the month of July. If daily adjustment factor for Tuesday is 1.121 and monthly adjustment factor for July is 0.913, the Annual Average Daily Traffic (in veh/day, round off to the nearest integer) is _______.

Ans.
Detailed Solutions of GATE 2020: CIVIL ENGINEERING

Date of Test: 09-02-2020 (Afternoon)

Ans. (1023)

\[T_{24} = 1000 \text{ veh (Tuesday)} \]

\[\text{DAF} = 1.121 \]

\[\text{AADT} = ? \]

\[\text{MAF} = 0.913 \]

\[T_{\text{week}} = T_{24} \times \text{DAF} \]

\[= 1000 \times 1.121 = 1121 \]

\[\text{AADT} = \frac{\text{MAF} \times \text{ADT}}{\text{MAF}} = (0.913 \times 1121) \]

\[= 1023.473 \]

\[= 1023 \text{ VPD} \]

End of Solution

Q.10 Velocity distribution in a boundary layer is given by \[\frac{u}{u_\infty} = \sin \left(\frac{\pi}{2} \frac{y}{\delta} \right), \]

where \(u \) is the velocity at vertical coordinate \(y \), \(u_\infty \) is the free stream velocity and \(\delta \) is the boundary layer thickness. The values of \(u_\infty \) and \(\delta \) are 0.3 m/s and 1.0 m, respectively. The velocity gradient \(\left(\frac{\partial u}{\partial y} \right) \) (in s\(^{-1}\), round off to two decimal places) at \(y = 0 \), is ________.

Ans. (0.47)

Given:

\[\frac{u}{u_\infty} = \sin \left(\frac{\pi}{2} \frac{y}{\delta} \right) \]

\[u_\infty = 0.3 \text{ m/s} \]

\[\delta = 1 \text{ m} \]

\[\frac{du}{dy} = \frac{d}{dy} u_\infty \cdot \sin \left(\frac{\pi}{2} \frac{y}{\delta} \right) \]

\[= \frac{u_\infty \cdot \pi}{2\delta} \cos \left(\frac{\pi}{2} \frac{y}{\delta} \right) \]

At \(y = 0 \) and \(\delta = 1 \)

\[\left. \frac{du}{dy} \right|_{y=0} = \frac{0.3\pi}{2(1)} \cos \left(\frac{\pi}{2} \frac{0}{1} \right) \]

\[= 0.47 \text{ s}^{-1} \]

End of Solution

Q.11 A weightless cantilever beam of span \(L \) is loaded as shown in the figure. For the entire span of the beam, the material properties are identical and the cross-section is rectangular with constant width.
From the flexure-critical perspective, the most economical longitudinal profile of the beam to carry the given loads amongst the options given below, is

(a) ![Diagram](a)
(b) ![Diagram](b)
(c) ![Diagram](c)
(d) ![Diagram](d)

Ans. (a)

\[(-PL) + (PL) + (-M_A) = 0 \]
\[M_A = 0 \]

For most economical,
Maximum cross-section is given where maximum bending moment occurs.

So, option (a) is correct.

Q.12 Two identically sized primary settling tanks receive water for Type-I settling (discrete particles in dilute suspension) under laminar flow conditions. The surface overflow rate (SOR) maintained in the two tanks are 30 m3/m2.d and 15 m3/m2.d. The lowest diameters of the particles, which shall be settled out completely under SORs of 30 m3/m2.d are designated as d_{30} and d_{15} respectively. The ratio $\frac{d_{30}}{d_{15}}$ (round off to two decimal places), is __________.
Ans. \((1.41)\)

For type-I setting, Stokes law is applicable.

\[V_s \propto d^2 \]

\[\frac{d_{30}^2}{d_{15}^2} = \frac{30}{15} = 2 \]

\[\frac{d_{30}}{d_{15}} = \sqrt{2} = 1.41 \]

Q.13 As per IS 456:2000, the pH value of water for concrete mix shall NOT be less than

(a) 6.0 \hspace{1cm} (b) 5.0

(c) 4.5 \hspace{1cm} (d) 5.5

Ans. \((a)\)

1. Minimum pH value of water for concrete = 6.0

As per IS code provision no. 5.4.2, the pH value of water shall not be less than 6.0.

Q.14 Superpassage is a canal cross-drainage structure in which

(a) canal water flows under pressure below a natural stream

(b) natural stream water flows under pressure below a canal

(c) canal water flows with free surface below a natural stream

(d) natural stream water flows with free surface below a canal

Ans. \((c)\)

Q.15 A soil has dry weight of 15.5 kN/m\(^3\), specific gravity of 2.65 and degree of saturation of 72%. Considering the unit weight of water as 10 kN/m\(^3\), the water content of the soil (in %, round off to two decimal places) is ________.

Ans. \((19.28)\)

\[
\gamma_d = 15.5 \text{ kN/m}^3, \quad G = 2.65, \quad S = 72% \\
\gamma_d = \frac{G \gamma_w}{1 + e} = \frac{2.65 \times 10}{1 + e} = 15.5 \\
e = 0.7096 \\
w = \frac{Se}{G} = \frac{0.72 \times 0.7096}{2.65} = 0.1928 \\
w = 19.28%
\]
Q.16 The maximum applied load on a cylindrical concrete specimen of diameter 150 mm and length 300 mm tested as per the split tensile strength test guidelines of IS 5816 : 1999 is 157 kN. The split tensile strength (in MPa, round off to one decimal place) of the specimen is _______.

Ans. (2.2)

\[P = 157 \text{ kN} \]
\[D = 150 \text{ mm} \]
\[L = 300 \text{ mm} \]

In split tensile strength test, split tensile strength of concrete

\[f_{et} = \frac{2P}{\pi DL} = \frac{2 \times 157000}{\pi \times 150 \times 300} \]
\[= 2.22 \text{ N/mm}^2 \]

Q.17 The state of stress represented by Mohr’s circle shown in the figure is

(a) hydrostatic stress (b) uniaxial tension
(c) biaxial tension of equal magnitude (d) pure shear

Ans. (d)

In pure shear condition, Mohr’s circle has its center at origin.
Q.18 The ratio of the plastic moment capacity of a beam section to its yield moment capacity is termed as
(a) aspect ratio (b) load factor
(c) shape factor (d) slenderness ratio

Ans. (c)

\[
\text{Ratio of } \frac{M_p}{M_y} = \text{Shape factor}
\]

Q.19 A sample of 500 g dry sand, when poured into a 2 litre capacity cylinder which is partially filled with water, displaces 188 cm\(^3\) of water. The density of water is 1 g/cm\(^3\). The specific gravity of the sand is
(a) 2.55 (b) 2.72
(c) 2.66 (d) 2.52

Ans. (c)

\[
\gamma_s = \frac{W_s}{V_s}
\]
\[
G_s = \frac{\gamma_s}{\gamma_w} = \frac{500}{188} = 2.66
\]

Q.20 The value of \(\lim_{x \to \infty} \frac{\sqrt{9x^2 + 2020}}{x + 7} \) is
(a) 1 (b) 3
(c) \(\frac{7}{9} \) (d) Indeterminable

Ans. (b)

\[
\lim_{x \to \infty} \frac{3x \sqrt{1 + \frac{2020}{x^2}}}{x(1 + \frac{7}{x})} = 3
\]
Q.21 The ordinary differential equation \(\frac{d^2u}{dx^2} - 2x^2u + \sin x = 0 \) is

(a) linear and homogeneous
(b) nonlinear and homogeneous
(c) nonlinear and nonhomogeneous
(d) linear and nonhomogeneous

Ans. (d)

Its solution is of the type \(u = f(x) \), i.e., dependent variable is \(u \). Hence, given equation is Linear & Non-Homogeneous.

Q.22 A gas contains two types of suspended particle having average sizes of 2 \(\mu \)m and 50 \(\mu \)m. Amongst the options given below, the most suitable pollution control strategy for removal of these particles is

(a) electrostatic precipitator followed by cyclonic separator
(b) bag filter followed by electrostatic precipitator
(c) settling chamber followed by bag filter
(d) electrostatic precipitator followed by venturi scrubber

Ans. (c)

Q.23 The integral

\[\int_0^1 (5x^3 + 4x^2 + 3x + 2) \, dx \]

is estimated numerically using three alternative methods namely the rectangular, trapezoidal and Simpson’s rules with a common step size. In this context, which one of the following statement is TRUE?

(a) Simpson’s rule as well as rectangular rule of estimation will give non zero error.
(b) Only Simpson’s rule of estimation will give zero error.
(c) Simpson’s rule, rectangular rule as well as trapezoidal rule of estimation will give non-zero error.
(d) Only the rectangular rule of estimation will given zero error.

Ans. (b)

Because integral is a polynomial of 3rd degree so Simpson’s rule will give error free answer.

Q.24 A fair (unbiased) coin is tossed 15 times. The probability of getting exactly 8 Heads (round off to three decimal places), is ________.

Ans. (0.196)

\[P(H) = \frac{1}{2} \]
P(T) = \frac{1}{2}

Probability of getting exactly 8 heads out of 15 trial = \binom{15}{8} \left(\frac{1}{2}\right)^8 \left(\frac{1}{2}\right)^{15-8} = 0.196

Q.25 The following partial differential equation is defined for \(u : u(x, y) \)
\[
\frac{\partial u}{\partial y} = \frac{\partial^2 u}{\partial x^2}; \quad y \geq 0; \quad x_1 \leq x \leq x_2
\]

The set of auxiliary conditions necessary to solve the equation uniquely, is
(a) one initial condition and two boundary conditions
(b) three initial conditions
(c) two initial conditions and one boundary condition
(d) three boundary conditions

Ans. (a)

Given: DE is \(\frac{\partial u}{\partial y} = \frac{\partial^2 u}{\partial x^2}; \quad y \geq 0; \quad x_1 \leq x \leq x_2 \)

\(\therefore y \) is given as \(\geq 0 \) so we take it as time.

Hence, above equation is nothing but one-D heat equation which requires one initial condition and two boundary condition.

Q.26 A hydraulic jump occurs, in a triangular (V-shaped) channel with side slopes 1:1 (vertical to horizontal). The sequent depths are 0.5 m and 1.5 m. The flow rate (in m\(^3\)/s, round off to two decimal places) in the channel is _____.

Ans. (1.73)

\[
A = \frac{1}{2} \times 2Y \times Y = Y^2
\]

\[
\bar{Y} = \frac{Y}{3}
\]

For a horizontal and frictionless channel

Specific Force \((F) = A\bar{Y} + \frac{Q^2}{Ag} = \text{Constant} \)

\[
\Rightarrow Y^2 \left(\frac{Y}{3}\right) + \frac{Q^2}{(Y^2)g} = \text{Constant}
\]

\[
\Rightarrow \frac{Y^3}{3} + \frac{Q^2}{gY^2} = \text{Constant}
\]
If \(Y_1 \) and \(Y_2 \) are conjugate depths

\[
\frac{Y_1^3}{3} + \frac{Q^2}{gY_1^2} = \frac{Y_2^3}{3} + \frac{Q^2}{gY_2^2}
\]

\[\Rightarrow \quad \frac{0.5^3}{3} + \frac{Q^2}{g \times 0.5^2} = \frac{1.5^3}{3} + \frac{Q^2}{g \times 1.5^2}\]

\[\Rightarrow \quad \frac{1.5^3}{3} - \frac{0.5^3}{3} = \frac{Q^2}{g} \left(\frac{1}{0.5^2} - \frac{1}{1.5^2} \right)\]

\[Q = 1.728 \text{ m}^3/\text{sec}\]

Q.27 A concrete beam of span 15 m, 150 mm wide and 350 mm deep is prestressed with a parabolic cable as shown in the figure (not drawn to the scale). Coefficient of friction for the cable is 0.35, and coefficient of wave effect is 0.0015 per metre.

If the cable is tensioned from one end only, the percentage loss (round off to one decimal place) in the cable force due to friction, is ________.

Ans. (4.49)

Jacking from one end

\[x = L = 15 \text{ m}\]

Wobble correction factor,

\[K = 0.0015\]

Coefficient of friction \(= 0.35 = \mu\)
\[P = \text{Not given} \]
\[p_0 = \text{Unknown} \]

Change of gradient, \[\alpha = \tan \alpha = \frac{8h}{L} = \frac{8 \times 120}{15000} = 0.064 \]

\% loss of stress in steel due to friction

\[= \frac{p_0(Kx + \mu \alpha)}{p_0} \times 100 \]
\[= (0.0015 \times 15 + 0.35 \times 0.064) \times 100 \]
\[= 4.49\% \]

Q.28 The Fourier series to represent \(x - x^2 \) for \(-\pi \leq x \leq \pi\) is given by

\[x - x^2 = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx \]

The value of \(a_0 \) (round off to two decimal places), is _______.

Ans. (–6.58)

\[a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)dx = \frac{1}{\pi} \int_{-\pi}^{\pi} (x - x^2)dx = \frac{-1}{\pi} \int_{0}^{\pi} 2x^2dx \]
\[= -\frac{1}{\pi} \left(\frac{2x^3}{3} \right)_{0}^{\pi} = -\frac{2}{3\pi} \left[\pi^3 \right] = -\frac{2\pi^2}{3} = -6.58 \]

Q.29 The diameter and height of a right circular cylinder are 3 cm and 4 cm, respectively. The absolute error in each of these two measurements is 0.2 cm. The absolute error in the computed volume (in cm\(^3\), round off to three decimal places), is _______.

Ans. (5.18)

Let diameter, \(x = 3 \) and height = \(y = 4 \) and error = ± 0.2

\[V = \pi \left(\frac{x}{2} \right)^2 y = \frac{\pi x^2 y}{4} \]

\[\therefore \quad V = f(x, y) \]

So,

\[dV = \left(\frac{\partial V}{\partial x} \right) dx + \left(\frac{\partial V}{\partial y} \right) dy \]

i.e.,

\[dV = \left(\frac{1}{2} \pi xy \right) dx + \left(\frac{\pi x^2}{4} \right) dy \]

\[= \frac{1}{2} \pi \times 3 \times 4 \times (0.2) + \frac{\pi \times (3)^2 \times (0.2)}{4} = 1.65\pi \]
\[= 1.65 \times 3.14 = 5.18 \text{ (approx)} \]

i.e., absolute error = | 5.18 | = 5.18
Q.30 The ion product of water \((pK_w) \) is 14. If a rain water sample has a pH of 5.6, the concentration of \(\text{OH}^- \) in the sample (in \(10^{-9} \) mol/litre, round off to one decimal place), is ________.

Ans. (3.98)

\[
pH + \text{pOH} = 14
\]
\[
\text{pOH} = 14 - 5.6 = 8.4
\]
\[
-\log [\text{OH}^-] = 8.4
\]
\[
[\text{OH}^-] = 10^{-8.4} \text{ moles/litre}
\]
\[
= 10^{-8.4+9} \times 10^{-9} \text{ moles/litre}
\]
\[
= 3.98 \times 10^{-9} \text{ moles/litre}
\]

Q.31 A concrete dam holds 10 m of static water as shown in the figure (not drawn to the scale). The uplift assumed to vary linearly from full hydrostatic head at the heel, to zero at the toe of dam. The coefficient of friction between the dam and foundation soil is 0.45. Specific weights of concrete and water are 24 kN/m\(^3\) and 9.81 kN/m\(^3\), respectively.

For NO sliding condition, the required minimum base width \(B \) (in m, round off to two decimal places) is __________.

Ans. (15.87 m)
Q.32 Permeability tests were carried out on the samples collected from two different layers as shown in the figure (not drawn to the scale). The relevant horizontal (k_h) and vertical (k_v) coefficients of permeability are indicated for each layer.

The ratio of the equivalent horizontal to vertical coefficients of permeability, is
(a) 37.29
(b) 80.20
(c) 0.03
(d) 68.25

Ans. (a)

$$\frac{k_{eqH}}{k_{eqV}} = \frac{\sum K_i Z_i}{\sum Z_i} = \frac{\frac{4.4 \times 10^{-3} \times 3 + 6 \times 10^{-1} \times 4}{7}}{\frac{3}{4 \times 10^{-3}} + \frac{4}{5.5 \times 10^{-1}}}$$

$$= \frac{0.3447}{9.24 \times 10^{-3}} = 37.29$$

Q.33 A sample of water contain an organic compound $C_8H_{16}O_8$ at a concentration of 10^{-3} mol/litre. Given that the atomic weight of $C = 12$ g/mol, $H = 1$ g/mol, and $O = 16$ g/mol, the theoretical oxygen demand of water (in g of O_2 per litre, round off to two decimal places), is __________.
Ans. (0.256)

C₈H₁₆O₈ of conc. 10⁻³ moles/lt required O₂ (in gm/lt)

C₈H₁₆O₈ + 8O₂ → 8CO₂ + 8H₂O

1 mole 8 mole

1 mole of C₈H₁₆O₈ requires 8 moles of O₂ for its decomposition

240 gm = 128 gm

or 10⁻³ moles = 8 × 10⁻³ moles

= 8 × 10⁻³ × 32

= 0.256 gm/lt

End of Solution

Q.34 A constant head permeability test was conducted on a soil specimen under a hydraulic gradient of 2.5. The soil specimen has specific gravity of 2.65 and saturated water content of 20%. If the coefficient of permeability of the soil is 0.1 cm/s, the seepage velocity (in cm/s, round off to two decimal places) through the soil specimen is ________.

Ans. (0.72)

Void ratio, \(e = \frac{wG}{s} = \frac{0.2 \times 2.65}{1} = 0.53 \)

Porosity, \(n = \frac{e}{1+e} = 0.3464 \)

Seepage velocity, \(V_s = \frac{v}{n} \frac{K_i}{n} \)

\[
= \frac{0.1 \times 2.5}{0.3464} = 0.72 \text{ cm/sec}
\]

End of Solution

Q.35 A theodolite is set up at station A. The RL of instrument axis is 212.250 m. The angle of elevation to the top of a 4 m long staff, held vertical at station B, is 7°. The horizontal distance between station A and B is 400 m. Neglecting the errors due to curvature of earth and refraction, the RL (in m, round off to three decimal places) of station B is ________.

Ans. (257.363)
Q.36 The plane truss has hinge supports at P and W and is subjected to the horizontal forces as shown in the figure (not drawn to the scale).

Representing the tensile force with ‘+’ sign and the compressive force with ‘−’ sign, the force in member XW (in kN, round off to the nearest integer), is ________.

Ans. (-30 kN)

Force in PQ
Considering the section above (1) – (1)

Taking moment about ‘R’

\[\Sigma M_{RL} = 0 \]

\[(10 \times 4) + (10 \times 8) + F_{PQ} \times 4 = 0 \]

\[F_{PQ} = -\frac{120}{4} = -30 \text{ kN} = 30 \text{ kN (Comp.)} \]

Q.37 A 4 \times 4 matrix \([P]\) is given below

\[
[P] = \begin{bmatrix}
0 & 1 & 3 & 0 \\
-2 & 3 & 0 & 4 \\
0 & 0 & 6 & 1 \\
0 & 0 & 1 & 6 \\
\end{bmatrix}
\]

The eigen values of \([P]\) are

(a) 0, 3, 6, 6
(b) 1, 2, 3, 4
(c) 1, 2, 5, 7
(d) 3, 4, 5, 7

Ans. \(c\)

\(|P| = 70\) and \(\text{Trace} (P) = 15\)

So, only option, i.e., (c) \((1, 2, 5, 7)\) satisfies.

Q.38 The flow-density relationship of traffic on a headway is shown in the figure
The correct representation of speed-density relationship of the traffic on this highway is

(a)
(b)
(c)
(d)

Ans. (a)

Q.39 Alkalinity of water, in equivalent/litre (eq/litre), is given by

\[
\{\text{HCO}_3^-\} + 2\{\text{CO}_3^{2-}\} + \{\text{OH}^-\} - \{\text{H}^+\}
\]

where, \{\} represents concentration in mol/litre. For a water sample, the concentration of \text{HCO}_3^- = 2 \times 10^{-3} \text{ mol/litre}, \text{CO}_3^{2-} = 3.04 \times 10^{-4} \text{ mol/litre} and the pH of water = 9.0. The atomic weights are: Ca = 40; C = 12; and O = 16. If the concentration of OH^- and H^+ are NEGLECTED, the alkalinity of the water sample (in mg/litre as CaCO_3), is

(a) 65.2
(b) 50.0
(c) 100.0
(d) 130.4

Ans. (d)

Alkalinity of water sample is due to presence of \text{[HCO}_3^-\] and \text{[CO}_3^{2-}\]

Total alkalinity = 1 mole of \text{[HCO}_3^-\] + 2 mole of \text{[CO}_3^{2-}\] in terms of CaCO_3

\[
= (2 \times 10^{-3} \times 50 + 2 \times 3.04 \times 10^{-4} \times 50) \times 10^3 \text{ mg/l}
\]

\[
= 130.4 \text{ mg/l as CaCO}_3
\]

Q.40 Group-I gives a list of test methods for evaluating properties of aggregates. Group-II gives the list of properties to be evaluated.

<table>
<thead>
<tr>
<th>Group-I : Test Methods</th>
<th>Group-II: Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. Soundness test</td>
<td>1. Strength</td>
</tr>
<tr>
<td>Q. Crushing test</td>
<td>2. Resistance to weathering</td>
</tr>
<tr>
<td>R. Los Angeles abrasion test</td>
<td>3. Adhesion</td>
</tr>
<tr>
<td>S. Stripping value test</td>
<td>4. Hardness</td>
</tr>
</tbody>
</table>
The correct match of test methods under Group-I to properties under Group-II, is
(a) P-4, Q-1, R-2, S-3 (b) P-2, Q-4, R-3, S-1
(c) P-2, Q-1, R-4, S-3 (d) P-3, Q-4, R-1, S-2

Ans. (c)

Q.41 A waste to energy plant burns dry solid waste of composition: Carbon = 35%, Oxygen = 26%, Hydrogen = 10%, Sulphur = 6%, Nitrogen = 3% and Inerts = 20%. Burning rate is 1000 tonnes/d. Oxygen in air by weight is 23%. Assume complete conversion of Carbon to CO₂. Hydrogen to H₂O, Sulphur to SO₂ and Nitrogen to NO₂. Given Atomic weighs: H = 1, C = 12, N = 14, O = 16, S = 32.
The stoichiometric (theoretical) amount of air (in tonnes/d, round off to the nearest integer) required for complete burning of this waste, is __________.

Ans. (6957)

$$\begin{align*}
C + \frac{O_2}{\frac{32}{12}} & \rightarrow CO_2 \\
\text{Oxygen required for 350 tonne/day} \\
\frac{32}{12} \times 350 &= 933.33 \\
4H + \frac{O_2}{\frac{32}{4}} & \rightarrow 2H_2O \\
\text{Oxygen required for 100 tonne/day} \\
\frac{32}{4} \times 100 &= 800 \\
S + \frac{O_2}{\frac{32}{32}} & \rightarrow SO_2 \\
\text{Oxygen required for 60 tonne/day} \\
\frac{32}{32} \times 60 &= 60 \\
N + \frac{O_2}{\frac{32}{14}} & \rightarrow NO_2 \\
\text{Oxygen required for 60 tonne/day} \\
\frac{32}{14} \times 30 &= 68.57
\end{align*}$$

Total O₂ = 1861.9 tonne/day
Available O₂ in waste = 260 tonne/day
Required = 1861.9 - 260 = 1601.9 tonne/day

Amount of air required = \(\frac{1601.9}{0.23} = 6964.78 \) tonne/day ≈ 6965 tonne/day
Q.42 A cast iron pipe of diameter 600 mm and length 400 m carries water from a tank and discharges freely into air at a point 4.5 m below the water surface in the tank. The friction factor of the pipe is 0.018. Consider acceleration due to gravity as 9.81 m/s^2. The velocity of the flow in pipe (in m/s, round off to two decimal places) is __________.

Ans. (2.56)

Apply energy equation between (1) and (2)

$$
\frac{P_1}{\rho g} + \frac{V_1^2}{2g} + z_1 = \frac{P_2}{\rho g} + \frac{V_2^2}{2g} + z_2 + h_f
$$

$$
4.5 = \frac{f \cdot L \cdot V^2}{2gD} + 0.5 \frac{V^2}{2g} + \frac{V^2}{2g}
$$

$$
4.5 = \frac{(0.018)(400) \cdot V^2}{2(9.81)(0.6)} + \frac{1.5V^2}{2g}
$$

$$
4.5 = \frac{12V^2}{2g} + \frac{1.5V^2}{2g}
$$

$V^2 = 6.54$

$V = 2.557 \text{ m/s} \approx 2.56 \text{ m/s}$

Q.43 Joints I, J, K, L, Q and M of the frame shown in the figure (not drawn to the scale) are pins. Continuous members IQ and IJ are connected through a pin at N. Continuous members JM and KQ are connected through a pin at P. The frame has hinge supports at joints R and S. The loads acting at joints I, J and K are along the negative Y direction and the loads acting at joints I, M are along the positive X direction.
The magnitude of the horizontal component of reaction (in kN) at S, is
(a) 15 (b) 10 (c) 5 (d) 20
Ans. (a)

Remove hinge at support S and replace it with roller support as shown in the figure.

Ist Step : Find coordinates of all the points where forces are acting.

\[y_I = \sqrt{2} \sin \theta, \quad y_J = \sqrt{2} \sin \theta, \quad y_K = \sqrt{2} \sin \theta \]

\[x_L = \sqrt{2} \cos \theta, \quad x_M = 5\sqrt{2} \cos \theta, \quad x_S = 6\sqrt{2} \cos \theta \]

IInd Step : Find virtual displacements of all the points.

\[\delta y_I = \sqrt{2} \cos \theta \, d\theta, \quad \delta y_J = \sqrt{2} \cos \theta \, d\theta, \quad \delta y_K = \sqrt{2} \cos \theta \, d\theta \]

\[\delta x_L = -\sqrt{2} \sin \theta \, d\theta, \quad \delta x_M = -5\sqrt{2} \sin \theta \, d\theta, \quad \delta x_S = -6\sqrt{2} \sin \theta \, d\theta \]

IIIrd Step : Use principle of virtual work to find unknown horizontal force \(H_S \)

\[\delta U = 0 \]

\[= \left[-10 \times \sqrt{2} \cos \theta \, d\theta\right] \times 3 + \left[10 \times -\sqrt{2} \sin \theta \, d\theta\right] + \left[10 \times -5\sqrt{2} \sin \theta \, d\theta\right] - \left[H_S \times -6\sqrt{2} \sin \theta \, d\theta\right] \]

\[H_S = \frac{30\sqrt{2} \cos \theta + 10\sqrt{2} \sin \theta + 50\sqrt{2} \sin \theta}{6\sqrt{2} \sin \theta} \]
Substituting, $\theta = 45^\circ$, $H_s = \frac{90}{6} = 15 \text{ kN}$

Note: Sign conventions

If a force acts along positive x or positive y-axis, take it as positive.
If a force acts along negative x or negative y-axis, take it as negative.

Q.44 The design speed of a two-lane two-way road is 60 km/h and the longitudinal coefficient of friction is 0.36. The reaction time of a driver is 2.5 seconds. Consider acceleration due to gravity as 9.8 m/s2. The intermediate sight distance (in m, round off to the nearest integer) required for the load is ________.

Ans. (162)

Given: $f = 0.36; \ v = 60 \text{ km}; \ g = 9.8 \text{ m/s}^2; \ t_R = 2.5\text{s}$

$$\text{SSD} = \left(0.278t_R + \frac{v^2}{254f} \right)$$

$$= 0.278 \times 2.5 + \frac{60^2}{254 \times 0.36}$$

$$= 41.7 + 39.37 = 81 \text{ m}$$

$$\text{ISD} = 2 \times \text{SSD} = 81 \times 2 = 162 \text{ m}$$

Q.45 A prismatic linearly elastic bar of length, L, cross-sectional area A, and made up of a material with Young's modulus E, is subjected to axial tensile force as shown in the figures. When the bar is subjected to axial tensile force P_1 and P_2, the strain energies stored in the bar are U_1 and U_2, respectively.

If U is the strain energy stored in the same bar when subjected to an axial tensile force $(P_1 + P_2)$, the correct relationship is

(a) $U = U_1 - U_2$
(b) $U = U_1 + U_2$
(c) $U < U_1 + U_2$
(d) $U > U_1 + U_2$

Ans. (d)

$$U_1 = \frac{P_1^2L}{2AE}$$

$$U_2 = \frac{P_2^2L}{2AE}$$
Q.46 Two steel plates are lap jointed in a workshop using 6 mm thick fillet weld as shown in the figure (not drawn to the scale). The ultimate strength of the weld is 410 MPa.

As per Limit State Design is IS 800 : 2007, the design capacity (in kN, round off to three decimal places) of the welded connection, is _______.

Ans. (413.586)

Design capacity of welded connection

\[P_s = f_b \times I_{eff} \times t_t \]

\[
\begin{align*}
P &= \frac{410}{\sqrt{3} \times 1.25} \times 520 \times 0.7 \times 6 \\
&= \frac{716352}{\sqrt{3}} \\
&= 413586 \, \text{N} \\
&= 413.586 \, \text{kN}
\end{align*}
\]
Q.47 For the hottest month of the year at the proposed airport site, the monthly mean of the average daily temperature is 39°C. The monthly mean of the maximum daily temperature is 48°C for the same month of the year. From the given information, the calculated Airport Reference Temperature (in°C), is
(a) 42 (b) 39 (c) 36 (d) 48

Ans. (a)

\[T_a = 39°C \]
\[T_m = 48°C \]

\[ATR = T_a + \left(\frac{T_m - T_a}{3} \right) \]

\[= 39 + \left(\frac{48 - 39}{3} \right) = 42°C \]

Q.48 A theodolite was set up at a station P. The angle of depression to a vane 2 m above the foot of a staff held at another station Q was 45°. The horizontal distance between stations P and Q is 20 m. The staff reading at a benchmark S of RL 433.050 m is 2.905 m. Neglecting the errors due to curvature and refraction, the RL of the station Q (in m), is
(a) 431.050 (b) 435.955 (c) 413.050 (d) 413.955

Ans. (d)

\[\frac{x}{20} = \tan 45° \]
\[x = 20 \text{ m} \]

RL of Q = 433.05 + 2.905 − x − 2
= 433.05 + 2.905 − 20 − 2
= 413.955 m
Q.49 A 10 m high slope of dry clay soil (unit weight = 20 kN/m³), with a slope angle of 45° and the circular slip surface, is shown in the figure (not drawn to the scale). The weight of the slip wedge is denoted by \(W \). The undrained unit cohesion \((c_u) \) is 60 kPa.

\[
\text{Area of circular arc} = \frac{\theta}{360} \times \pi r^2 - \text{Area of } \Delta
\]

\[
= \frac{90}{360} \times \pi \times 10^2 - \frac{1}{2} \times 10 \times 10 = 28.54 \text{ m}^2
\]

Height of wedge = Volume \(\times \gamma = (\text{Area} \times 1) \times \gamma
= 28.54 \times 1 \times 20 = 570.8 \text{ kN}
\]

\[
\text{FOS} = \frac{M_R}{M_0} = \frac{[c \times (r \theta) \times r]}{W \times x} = \frac{60 \times 10 \times \frac{\pi}{2} \times 10}{570.8 \times 4.48}
= 3.68
\]

The factor of safety of the slope against slip failure, is
(a) 0.58
(b) 1.84
(c) 1.57
(d) 1.67

Ans. (*)
Q.50 A 5 m high vertical wall has a saturated clay backfill. The saturation unit weight and cohesion of clay are 18 kN/m3 and 20 kPa, respectively. The angle of internal friction of clay is zero. In order to prevent development of tension zone, the height of the wall is required to be increased. Dry sand is used as backfill above the clay for the increased portion of the wall. The unit weight and angle of internal friction of sand are 16 kN/m3 and 30°, respectively. Assume that the back of the wall is smooth and top of the backfill is horizontal. To prevent the development of tension zone, the minimum height (in m, round off to one decimal place) by which the wall has to be raised, is __________.

Ans. (2.5)

To prevent tension crack,

$$q = \frac{2c}{\sqrt{\gamma}} = \frac{2 \times 20}{1} = 40$$

$$q = \gamma_d x = 40$$

$$x = \frac{40}{16} = 2.5 \text{ m}$$

Q.51 The cross-section of the reinforced concrete beam having an effective depth of 500 mm is shown in the figure (not drawn to the scale). The grades of concrete and steel used are M35 and Fe550, respectively. The area of tension reinforcement is 400 mm2. It is given that corresponding to 0.2% proof stress, the material safety factor is 1.15 and the yield strain of Fe550 steel is 0.0044.
As per IS 456:2000, the limiting depth (in mm, round off to the nearest integer) of the neutral axis measured from the extreme compression fiber, is 221.52 mm.

Ans. (221.52)

For a RCC T-Beam
(For limiting depth of neutral axis)

Considering \(d = 500 \text{ mm} \)

\[
\frac{0.0035}{x_{\text{u,lim}}} = \frac{0.0044}{d - x_{\text{u,lim}}}
\]

\[
d - x_{\text{u,lim}} = \frac{0.0044}{0.0035} \times x_{\text{u,lim}}
\]

\[
35 \times 500 = 35x_{\text{u,lim}} + 44x_{\text{u,lim}}
= 79x_{\text{u,lim}}
\]

\[
x_{\text{u,lim}} = \frac{35 \times 500}{79} = 221.52 \text{ mm}
\]

Limiting depth of neutral axis
\(x_{\text{0,lim}} = 221.52 \text{ mm} \)

Q. 52 Crops are grown in a field having soil, which has field capacity of 30% and permanent wilting point of 13%. The effective depth of root zone is 80 cm. Irrigation water is supplied when the average soil moisture drops to 20%. Consider density of the soil as 1500 kg/m³ and density of water as 1000 kg/m³. If the daily consumptive use of water for the crops is 2 mm, the frequency of irrigating the crops (in days), is

(a) 7
(b) 13
(c) 10
(d) 11

Ans. (*)

\[
\text{FC} = 30\% \\
\text{PWP} = 13\%
\]

\[
d_w = \frac{\gamma_{d}}{\gamma_{w}} \cdot d \times (\text{FC} - \text{OMC})
\]
\[
q = \frac{1500}{1000} \times 80(0.3 - 0.2) \\
= 12 \text{ cm or } 120 \text{ mm}
\]

Consumptive use = 2 mm/day

So, frequency of irrigation = \(\frac{120}{2} = 60 \text{ days} \)

Q.53 The planar structure RST shown in the figure is roller-supported at S and pin-supported at R. Members RS and ST have uniform flexural rigidity (EI) and S is a rigid joint. Consider only bending deformation and neglect effects of self-weight and axial stiffening.

When the structure is subjected to a concentrated horizontal load P at the end T, the magnitude of rotation at the support R, is

(a) \(\frac{PL}{6EI} \)
(b) \(\frac{PL^3}{12EI} \)
(c) \(\frac{PL^2}{6EI} \)
(d) \(\frac{PL^2}{12EI} \)

Ans. \(\text{ (d) } \)
\[\theta_R = \frac{(PL/2)L}{6EI} \]
\[\theta_R = \frac{PL^2}{12EI} \]

Q.54 An ordinary differential equation is given below

\[6 \frac{d^2y}{dx^2} + \frac{dy}{dx} - y = 0 \]

The general solution of the above equation (with constant \(C_1 \) and \(C_2 \)), is

\[(a) \quad y(x) = C_\frac{x}{3} + C_2 xe^x \]
\[(b) \quad y(x) = C_\frac{x}{3} + C_2 e^x \]
\[(c) \quad y(x) = C_1 e^{\frac{x}{3}} + C_2 e^{x} \]
\[(d) \quad y(x) = C_1 e^{\frac{x}{3}} + C_2 e^{\frac{x}{2}} \]

Ans. (d)

\[\frac{6d^2y}{dx^2} + \frac{dy}{dx} - y = 0 \]

\[(6D^2 + D - 1)y = 0 \]
\[6D^2 + 3D - 2D - 1 = 0 \]
\[3D(2D + 1) - 1(2D + 1) = 0 \]
\[(2D + 1)(3D - 1) = 0 \]
\[D = \frac{-1}{2}, \quad D = \frac{1}{3} \]
\[y = C_1 e^{x/3} + C_2 e^{-x/2} \]

Q.55 A footing of size \(2 \text{ m} \times 2 \text{ m} \) transferring a pressure of 200 kN/m\(^2\), is placed at a depth of 1.5 m below the ground as shown in the figure (not drawn to the scale). The clay stratum is normally consolidated. The clay has specific gravity of 2.65 and compression index of 0.3
Considering 2 : 1 (vertical to horizontal) method of load distribution and $\gamma_w = 10 \text{kN/m}^3$, the primary consolidation settlement (in mm, round off to two decimal places) of the clay stratum is _________.

Ans. (74.27)

End of Solution